On sparse interpolation and the design of deterministic interpolation points

نویسندگان

  • Zhiqiang Xu
  • Tao Zhou
چکیده

In this paper, we build up a framework for sparse interpolation. We first investigate the theoretical limit of the number of unisolvent points for sparse interpolation under a general setting and try to answer some basic questions of this topic. We also explore the relation between classical interpolation and sparse interpolation. We second consider the design of the interpolation points for the s-sparse functions in high dimensional Chebyshev bases, for which the possible applications include uncertainty quantification, numerically solving stochastic or parametric PDEs and compressed sensing. Unlike the traditional random sampling method, we present in this paper a deterministic method to produce the interpolation points, and show its performance with l1 minimization by analyzing the mutual incoherence of the interpolation matrix. Numerical experiments show that the deterministic points have a similar performance with that of the random points.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new trust-region algorithm based on radial basis function interpolation

Optimization using radial basis functions as an interpolation tool in trust-region (ORBIT), is a derivative-free framework based on fully linear models to solve unconstrained local optimization, especially when the function evaluations are computationally expensive. This algorithm stores the interpolation points and function values to using at subsequent iterations. Despite the comparatively ad...

متن کامل

Interpolation of the tabular functions with fuzzy input and fuzzy output

In this paper, rst a design is proposed for representing fuzzy polynomials withinput fuzzy and output fuzzy. Then, we sketch a constructive proof for existenceof such polynomial which can be fuzzy interpolation polynomial in a set given ofdiscrete points rather than a fuzzy function. Finally, to illustrate some numericalexamples are solved.

متن کامل

COMPOSITE INTERPOLATION METHOD AND THE CORRESPONDING DIFFERENTIATION MATRIX

Properties of the hybrid of block-pulse functions and Lagrange polynomials based on the Legendre-Gauss-type points are investigated and utilized to define the composite interpolation operator as an extension of the well-known Legendre interpolation operator. The uniqueness and interpolating properties are discussed and the corresponding differentiation matrix is also introduced. The appl...

متن کامل

Computation of sparse low degree interpolating polynomials and their application to derivative-free optimization

Interpolation-based trust-region methods are an important class of algorithms for Derivative-Free Optimization which rely on locally approximating an objective function by quadratic polynomial interpolation models, frequently built from less points than there are basis components. Often, in practical applications, the contribution of the problem variables to the objective function is such that ...

متن کامل

Interpolation of Shifted-Lacunary Polynomials [Extended Abstract]

Given a “black box” function to evaluate an unknown rational polynomial f ∈ Q[x] at points modulo a prime p, we exhibit algorithms to compute the representation of the polynomial in the sparsest shifted power basis. That is, we determine the sparsity t ∈ Z>0, the shift α ∈ Q, the exponents 0 ≤ e1 < e2 < · · · < et, and the coefficients c1, . . . , ct ∈ Q \ {0} such that f (x) = c1(x − α)1 + c2(...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014